Math 259A Lecture 17 Notes

Daniel Raban

November 6, 2019

1 Group von Neumann Algebras for ICC Groups

1.1 ICC group von Neumann algebras

Last time, we introduced $L(\Gamma)$, the group von Neumann algebra of Γ . This is the weak operator closure of span $\lambda(\Gamma)$, where λ is the left regular representation. We saw that $L(\Gamma)$ and $R(\Gamma)$ has the faithful, SO-continuous (and hence WO-continuous) trace state $\tau(x) := \langle x\xi_e, \xi_e \rangle$. This implied that $L(\Gamma)$ is a finite von Neumann algebra.

Theorem 1.1. $L(\Gamma)$ is a factor if and only if Γ is infinite conjugacy class (i.e. for any $g \neq e$, $\{hgh^{-1} : h \in \Gamma\}$ is infinite).

Proof. (\implies): We did this last time.

 (\Leftarrow) : If Γ is ICC but $z \in Z(\Gamma) \setminus \mathbb{C}1$, then $z(\xi_e) = \sum c_g \xi_g \in \ell^2(\Gamma)$ with $c_{g_0} \neq 0$ for some $g_0 \neq e$. Then for any $h, g \in \Gamma$,

$$\langle \lambda(g) z \lambda(g)^*(\xi_e), \xi_h \rangle = \langle z \xi_e, \xi_h \rangle = c_h.$$

On the other hand, $\lambda(g)^*(\xi_e) = \rho(g)(\xi_e)$, which commutes with z and $\lambda(g)$, so

$$\langle \lambda(g) z \lambda(g)^*(\xi_e), \xi_h \rangle = \langle \rho(g) \lambda(g) z \xi_e, \xi_h \rangle = \left\langle z \xi_e, \lambda_{g^{-1}} \xi_{hg} \right\rangle = \left\langle \sum_g c_g \xi_g, \xi_{g^{-1}hg} \right\rangle = c_{g^{-1}hg}.$$

Take $h = g_0$. Then $c_{g_0} = c_{gg_0g^{-1}}$ for all g, which gives infinitely many equal nonzero coefficients.

Corollary 1.1. If Γ is ICC, $L(\Gamma)$ is a II₁ factor.

Example 1.1. Let S_{∞} be the group of finite permutations of \mathbb{N} . Then S_{∞} is ICC. It is also **locally finite**: for any finite $F \subseteq S_{\infty}$, there is a finite subgroup of S_{∞} containing F.

Example 1.2. Let \mathbb{F}_n be the free group on *n* generators. This is ICC.

Definition 1.1. Given two groups $H_0, \Gamma_0, \Gamma_0 \circlearrowright H^{\Gamma_0}$ by left multiplication on the coordinates: $g_0(h_g)_{g\in\Gamma_0} = (h_{g_0^{-1}g})_{g\in\Gamma_0}$. The wreath product is the semidirect product $H^{\Gamma_0} \rtimes \Gamma_0$.

Example 1.3. When $H = \mathbb{Z}/2\mathbb{Z}$ and Γ_0 , the wreath product is called the **lamp lighter** group. You can think of this as an infinite row of lamps, each lit or unlit. This group is ICC.

Example 1.4. More generally, if $H_0, \Gamma_0 \neq \{1\}$ and Γ is infinite, the wreath product is ICC.

1.2 Distinguishing groups by their von Neumann algebras

More detailed description of $L(\Gamma)$.

Different groups can give rise to different group von Neumann algebras.

Theorem 1.2 (M-vN, 1943). $L(S_{\infty}) \neq L(\mathbb{F}_2)$.

However, there is some collapsing that goes on.

Theorem 1.3. All ICC locally finite Γ give the same $L(\Gamma)$.

Here is an open question:

Are $L(\mathbb{F}_n)$ isomorphic or not for different n?

1.3 Multiplication operators on $\ell^2(\Gamma)$

Proposition 1.1. Any $\xi \in \ell^2(\Gamma)$ defines operators $L_{\xi}, R_{\xi} : \ell^2(\Gamma) \to \ell^{\infty}(\Gamma)$ by

$$L_{\xi}(\eta) = \xi \eta = \sum_{g,h} c_g b_h \xi_{gh}, \qquad where \quad \xi = \sum_g c_g \xi_g, \eta = \sum_h b_h \xi_h.$$

Moreover, $||L_{\xi}||_{\mathcal{B}(\ell^2, \ell^{\infty})} \le ||\xi||_{\ell^2}$.

Proof. This follows by Cauchy-Schwarz:

$$\sup_{g\in\Gamma} |\xi\eta(g)| = \sup_{g\in\Gamma} \left| \sum_{h\in\Gamma} c_h b_{h^{-1}g} \right| \le \|\xi\|_{\ell^2} \|\eta\|_{\ell^2}.$$

Т

Proposition 1.2. $D(L_{\xi}) = L_{\xi}^{-1}(\ell^2) \subseteq \ell^2$ is a vector subspace, closed in L^2 . Moreoverl L_{ξ} on $D(L_{\xi})$ is a densely defined, closed operator on $\ell^2(\Gamma)$.

Proof. We need to show that L_{ξ} has closed graph. That is, we need to show that if $\eta_i \to 0$ and $L_{\xi}(\eta_i) \to \eta$ in ℓ^2 , then $\eta = 0$.

We will do this next time.